ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

<table>
<thead>
<tr>
<th>Owner of the Declaration</th>
<th>Argeton GmbH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme holder</td>
<td>Institut Bauen und Umwelt e.V. (IBU)</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institut Bauen und Umwelt e.V. (IBU)</td>
</tr>
<tr>
<td>Declaration number</td>
<td>EPD-WIN-20140143-ICA2-EN</td>
</tr>
<tr>
<td>Issue date</td>
<td>16.08.2019</td>
</tr>
<tr>
<td>Valid to</td>
<td>15.08.2024</td>
</tr>
</tbody>
</table>

Argeton
Ceramic facade elements
Argeton GmbH

www.ibu-epd.com | https://epd-online.com
1. General Information

1.1 Programme holder
Argeton GmbH
IBU – Institut Bauen und Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany

1.2 Owner of the declaration
Argeton GmbH
Oldenburger Allee 26
D-30659 Hannover

1.3 Declaration number
EPD-WIN-20140143-ICA2-EN

1.4 This declaration is based on the product category rules:
Ceramic panelling, 07.2014
(PCR checked and approved by the SVR)

1.5 Issue date
16.08.2019

1.6 Valid to
15.08.2024

\[\text{Dipl. Ing. Hans Peters}
\text{(chairman of Institut Bauen und Umwelt e.V.)}\]

\[\text{Dr. Alexander Röder}
\text{(Managing Director Institut Bauen und Umwelt e.V.)}\]

\[\text{Patricia Wolf}
\text{(Independent verifier appointed by SVR)}\]

2. Product

2.1 Product description/Product definition
Argeton clay brick facades consist of plane ceramic facade panels manufactured from different clay mixtures. Both single-leaf panels and panels with cavities are produced for ventilated facade linings. The facade panels are fit to a primary facade strapping by use of system-oriented aluminium structural systems. Argeton facade panels are available in different shipping sizes and dimensions with or without cavities, hence they differentiate in area density. The raw materials utilized according to recipe and the manufacturing process are identical. The declared area density makes up an annual average based on the production volume manufactured in 2013.

For the placing on the market the national regulations at the place of use apply, in Germany for instance the building regulations of the federal states, as well as the technical specifications based on these regulations.

2.2 Application
Argeton clay brick panels are used as lining material with ventilated facade linings, and with decorative linings for interior work. The facade panels are also used with ceilings, window reveals, window lintels, cover panels, or in the roof section.

2.3 Technical Data
The technical specifications of the product within the scope of the EPD are listed below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross density</td>
<td>2000 - 2200</td>
<td>kg/m²</td>
</tr>
<tr>
<td>Bending strength</td>
<td>12-20</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Water absorption (DIN 10545-3)</td>
<td>3-8</td>
<td>%</td>
</tr>
</tbody>
</table>

The sound absorption coefficient is not relevant to the ceramic facade panels case of application.
2.4 Delivery status

Argeton facade panel dimensions:

Diameter 24 mm (without cavities):
- Heights 150-300 mm
- Factory lengths up to 800 mm
- Area density: approx. 31 kg/m²
- Specific density: approx. 2.2 g/cm³

Diameter 24 mm (with cavities):
- Heights 150-300 mm
- Factory lengths up to 1200 mm
- Area density: approx. 33 kg/m²
- Bulk density: approx. 2.2 g/cm³

Diameter 30 mm (without cavities):
- Heights 150-225 mm
- Factory lengths up to 1200 mm
- Area density: approx. 42 kg/m²
- Bulk density: approx. 2.2 g/cm³

Diameter 30 mm (with cavities):
- Heights 237.5-500 mm
- Factory lengths up to 1500 mm
- Area density: approx. 42 kg/m²
- Bulk density: approx. 2.2 g/cm³

2.5 Base materials/Ancillary materials

The Argeton facade system consists of ceramic façade panels and a system-oriented aluminium strapping. The ceramic façade panels comprise 96% of clay (weathered products of feldspathic stones), 1.5% of chamotte (burnt and ground clays), 1% of feldspar, clay (weathered products of feldspathic stones), 1.5% of coloured pigments (metallic oxides for pigmentation of the raw material), and 0.2% of surface colour coating (engobes or glazes). Clays and chamottes originate from the site of Görlitz and the regional facility surrounding. A quantity proportion of approx. 15% originates from Westerwald in Germany. Coloured pigments and surface coatings are additionally purchased from renowned manufacturers of those materials.

No /REACH/-relevant substances according to the candidate list dated 21 June 2013 are used in production.

2.6 Manufacture

Production of Argeton facade panels is made in nine steps:
- Raw material extraction, preparation, shaping, dehydration, colouring, burning, cutting, quality control and packaging.
- Clay is exploited in clay quarries near the factory. Transport into the factory is followed by the preparation process. It involves milling, mixing, moistening and scouring the clay from foreign particles like stones, and the admixture of construction aggregates. During the extrusion process the clay is pressed through a form(die) and roughly cut to length. During dehydration the soft clay is dehumidified. An engobe or glaze will be applied on the dried square bricks if required. Depending on the clay the square bricks are burnt in a roller kiln at a temperature of 1000°C to 1200°C. The burning process is followed by cutting to the exact length. The square bricks are examined visually and measured randomly in terms of their trueness of shape. Packaging is made semi-automatic with foil and additional packaging materials on pallets. The quality management system meets the requirements of /ISO 9001/norm.

2.7 Environment and health during manufacturing

All maintenance investments and provisions for the Argeton facades are principally implemented with due regard to the safety and health requirements of employees. The Wienerberger Safety Initiative specifically implements consistent safety standards which led to a clear reduction of accident frequency in the past four years. The safety standards which apply for all Wienerberger factories include the foundation of committees on the topic of safety at work, as well as the definition of responsibilities and the introduction of extensive training.

In addition, a comprehensive inquiry on the subject fine quartz particles will regularly be made on the online platform NEPSI (Negotiation Platform on Silica). Data will be collected concerning the potential hazard of employees, health checks, training, the distribution and application of personal protective equipment, and technical arrangements. Noise immissions are constantly monitored regarding the adherence of legal limits, corresponding personal protective equipment will be provided.

The production is certified in compliance with EU environmental standards (/ISO 14001/ and /ISO 50001/) and the occupational health and safety assessment system (/OHSAS 18001/).

It is attempted to minimize the effects on environment and health during the whole production process.

2.8 Product processing/Installation

Installation involves the use of a system-oriented substructure. The installation instructions in the building inspectorate approval must be observed. Corresponding personal protective equipment must be worn as a protection against the influence of dusts containing quartz, potential brick chippings and noise (respiratory protection P2/FFP2, protection goggles and ear protection) during boring and cutting the bricks. A sufficient ventilation of the workstation must be guaranteed, and tools with a low dust exposition like e.g. wet cutters should be used.

Appropriate tools according to custom may be used to work on the system-oriented aluminium strapping. Occupational health and safety regulations must be considered as well.

The ceramic facade panels are held by special aluminium panel holders on vertical T profiles or by aluminium panel cramps on horizontal Alu bearing rails. Alu joint profiles secure a 4 mm or 8 mm wide vertical joint and fix the panels in place.

2.9 Packaging

Products will be packed on reusable EUR-pallets, partially with cardboard or wooden intermediate layers and with PE shrink-wraps. Reusable pallets may be taken back against refund. All the other packaging materials are taken back by the building materials trade to be recycled. Only wooden pallets are considered as part of the life cycle assessment which had to be replaced in 2013.

2.10 Condition of use

Ceramic facade elements do not change after the production process. In keeping with applicable
standards, constantly implemented material controls
and more than 30 years of practical experience, the
façade elements are weatherproof, frost-proof, acid-
proof, alkali resistant, as well as colour-fast and UV-
resistant.
Replacing a single or several panels is always possible.

2.11 Environment and health during use
Argeton façade panels are constantly controlled
regarding their leaching behaviour by a state-approved
inspecting authority. Controlled elements such as
arsenic, chrome, fluoride, molybdenum, selenium,
sulphate and vanadium come many times below the
permitted emission.

2.12 Reference service life
Argeton façade panels will not be changed after
completion of the production process. They are
indefinitely consistent under normal use. Facade
elements are frost-resistant as per /DIN EN ISO
10545-12/, resistant to chemical attack as per /DIN EN
ISO 10545-13/ and acid-proof / alkali-proof /DIN V 105-
100/.

As specified by the manufacturer, the reference
service life of the strapping is at least 60 years, the one
of the façade panel is 150 years. The RSL considered
in this case is 50 years, this corresponds to the RSL of
residential buildings according to the DGNB system
(Deutsche Gesellschaft für Nachhaltiges Bauen e.V. -
German Sustainable Building Council).

2.13 Extraordinary effects

Fire
Argeton façade elements meet the requirements
according to /DIN EN 13501/ and /DIN EN 14411/. In
case of fire neither toxic gases nor vapours that
impede the sight may emerge.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building material class</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>Burning droplets</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Smoke gas development</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

Water
Due to the solid ceramic bond no ingredients that are
hazardous to environment and water may be washed
out resulting from water action.

Mechanical destruction
After mechanical destruction of Argeton façade
elements no negative effects on the environment are to
be expected.

2.14 Re-use phase
A re-utilisation of square bricks for facade linings is
basically possible even after many years. Varietal brick
residues that have been manufactured into chamotte
may be recycled in brick production. Further uses of
chamotte can be found e.g. in traffic and civil
engineering, with flooring materials or with tennis
courts. The aluminium strapping is fully recyclable as
well.

2.15 Disposal
If there are no recycling possibilities the element
residues may be deposited. Disposal code:
170102 (bricks) according to/European list of wastes/
The capacity to deposit facade elements as per landfill
class I according to the technical instruction for
recovery, treatment and other disposal of municipal
waste is guaranteed.

2.16 Further information
For additional information visit
www.argeton.com

3. LCA: Calculation rules

3.1 Declared Unit
The declaration refers to 1 m² of ceramic façade
panels inclusive system-oriented aluminium strapping.
The average area density of ceramic façade panels
(without strapping) is 40 kg/m², the one of the
strapping 0.57 kg/m².

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declared unit</td>
<td>1</td>
<td>m²</td>
</tr>
<tr>
<td>Grammage</td>
<td>40.57</td>
<td>kg/m²</td>
</tr>
<tr>
<td>Gross density</td>
<td>2100</td>
<td>kg/m²</td>
</tr>
<tr>
<td>Conversion factor to 1 kg</td>
<td>1/40.57</td>
<td></td>
</tr>
</tbody>
</table>

If averages of different products are declared,
the averaging shall be explained. For IBU Core EPDs
(where chapter 3.6 is not declared):
For average EPDs, an assessment of the robustness
of the LCA values must be made, e.g. regarding the
variability of the production process, the geographical
representativeness and the influence of the
background data and intermediate products compared
to the environmental impacts caused by the actual
production.

3.2 System boundary
EPD type: Cradle to grave.
Life cycle assessment considers raw material
production, raw material transports and the actual
product manufacturing including consideration of
packaging materials (modules A1-A3).
Transport to construction site (module A4) and
treatment of packaging materials in refuse destructors
after installation of the product (module A5) are part of
the system boundaries too.
After the end of service life, the product will be
dismantled manually (module C1). After the transport
of the dismantled product (module C2) the façade
panel is destined for disposal on an inert waste
disposal (module C4), the aluminium strapping may be
recycled.
Allowances owing to the recycling of primary
aluminium are declared in module D. Allowances for
electricity and thermal energy owing to the thermal
recovery of packing within module A5 are considered
in module D as well. The stage of use (modules B1-
B5) is considered in this study.
Since modules B6 and B7 refer to the operation of the
building they are not declared in the EPD for the
Argeton façade system. The use of the product is
not related to the operational use of energy and water
for buildings.
3.3 Estimates and assumptions
Since the manufacturer does not know the exact composition of the engaged engobes and glazes, a typical composition has been determined in each case as agreed upon with Wienerberger GmbH and with the help of safety data sheets. The mass fraction of engobes and glazes in the final product is 0.1% each. The mixing of the recipe components (mixing energy) is neglected. The influence of these assumptions on the life cycle assessment results is negligibly small.

Energetic expenditures for chamotte production do not exist on the supplier's side. Thus, an estimation was made based on generic data of the GaBi database. The mass fraction of chamotte in the final product is less than 3%.

According to the manufacturer, the alloys AlMgSi0,5 F25 (EN AW 6063 T66 as per /DIN EN 755/) and AlCuMg1 (3005 H47 as per /DIN 573-3/) are used to produce the aluminium strapping. The data sets DE: Aluminium extrusion profile (AlMgSi) and DE: Aluminium sheet (AlCu4Mg1) have been used for illustration in the life cycle assessment model. The influence of the selection of data sets on the results with respect to the specific illustration of the alloy used is of minor importance. For the results of the consideration by module the assumption is rather decisive that engaged secondary aluminium enters modules A1-A3 unencumbered. Allowances for engaged primary aluminium are allocated in module D exclusively. According to the manufacturer, they are producing with secondary aluminium in large part in the different factories of the supplier. Because its application cannot be quantified from the supplier the present life cycle assessment calculates with average data of /EAA/. Thus, the proportion of primary aluminium is estimated 60% and the proportion of secondary aluminium is estimated 40%.

3.4 Cut-off criteria
All details from the factory data collection i.e. all raw materials engaged according to recipe, the engaged thermal energy, the demand for electricity and by products have been considered in balancing. Transport expenditures have been considered for all inputs that contribute more than 0,1-M% to product manufacturing. According to /IBU PCR Part A/, also material and energy streams with a proportion of less than 1% regarding the total mass of the product have been considered.

The manufacturing of the machines, plants and other infrastructure required to produce the considered articles are not part of the life cycle assessment.

3.5 Background data
The software system for holistic balancing /GaBi 6/ developed by PE INTERNATIONAL AG was used for modelling the ceramic facade panels as well as the system-oriented strapping. The consistent data sets included in the GaBi database are recodend in the online /GaBi documentation/. The GaBi database basis data was used for energy, transport and auxiliary material. The life cycle assessment was prepared for the reference area of Germany. Consequently, pre-stages like the provision of electricity or energy sources that are relevant for Germany have been used in addition to production processes under these boundary conditions. The 2009 basic year power mix for Germany is applied. Some combustion process emissions have been collected as primary data based on measurements by Wienerberger GmbH. Since the emission measurements were not complete, the generic background data set “Thermal energy from natural gas” has been applied for the combustion process, considering all emissions of natural gas combustion. This combustion profile had been adapted to the site with the help of the delivered Wienerberger GmbH emission data, i.e. the difference between generic combustion data and primary data was additionally illustrated in the life cycle assessment model.

3.6 Data quality
The data collected by Wienerberger GmbH for the 2013 year of production has been used for modelling the product development stage of the ceramic facade panel (incl. strapping). All additional relevant background data sets have been obtained from the /GaBi 6/ software database. The database was last updated in 2013.

3.7 Period under review
The data basis of the life cycle assessment is based on data collections from 2013. The data represent an annual average of 12 months.

3.8 Allocation
For the production of ceramic facade panels Wienerberger GmbH uses both synthetic iron oxide and so-called hammer scale or oxide scale for colouring. Those latter iron oxide small plates accumulate as waste in steel plants. During metal working a loss of material occurs on metal surfaces due to the oxidation of the metal at high temperatures or they fly off the work piece during the forging of iron. This non-synthetic iron oxide is regarded as secondary material within the life cycle assessment which enters the production process unencumbered. The mass fraction is below 1%.

The defective goods of the ceramic facade panels are partially recycled. Arising burning waste is being manufactured into chamotte externally and added again as chamotte to the production process of ceramic façade panels. The resource flow of clay is shown in the model (closed loop).

Another amount of production waste is used for covering own requirements on the factory premises as foundation for streets and squares. A large part is additionally mixed in the clay quarries ("recycling"). These material streams leave the system boundaries value-free and unencumbered.

Environmental encumbrances due to the combustion of packaging (wood, plastic) are attributed to module A5; resulting allowances for thermal and electric energy are declared in module D. Allowances are made through German average data concerning electric and thermal energy from natural gas.

In addition to wooden pallets and plastic packaging, paper is used as packaging material. Waste paper, which is used for modelling paper goes down in the calculation unencumbered. Apart from the use of waste paper an addition of fresh fibres is always considered. It is assumed the paper is brought to paper recycling. Paper recycling is a very complex network which can only be illustrated partly within given system boundaries. The cut-off approach is selected the methodical approach. This means no environmental encumbrances are considered for waste
paper, no allowances are awarded for the resulting paper (module A5). Recycling process and paper production coalesce in the manufacturing process.

The aluminium strapping is made both of primary and of secondary aluminium. The engaged secondary aluminium is regarded as unencumbered in the production. A collection rate of 90 % is estimated to occur as aluminium scrap in the end of life stage. The remelting and cleaning effort is considered for this amount. After deducting the engaged secondary amount, the remaining net aluminium amount is attributed to the system in module D (Data set DE: Aluminium ingot mix).

4. LCA: Scenarios and additional technical information

The following technical information are the basis for the declared modules.

Transport to the building site (A4)

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport distance</td>
<td>100</td>
<td>km</td>
</tr>
<tr>
<td>Capacity utilisation (including empty runs)</td>
<td>85</td>
<td>%</td>
</tr>
</tbody>
</table>

Installation into the building (A5)

At the construction site the following packaging materials arise per m² of ceramic facade panel inclusive strapping:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wooden pallets</td>
<td>0,19</td>
<td>kg</td>
</tr>
<tr>
<td>Plastic waste</td>
<td>0,055</td>
<td>kg</td>
</tr>
<tr>
<td>Waste paper</td>
<td>0,19</td>
<td>kg</td>
</tr>
</tbody>
</table>

Use or application of the installed product (B1) see section 2.12 "Use"

During the use of ceramic facade panels (B1) neither additional resources are needed, nor emissions are released. The panels are colour-fast and UV-resistant for the entire life cycle.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ressourcen</td>
<td>0</td>
<td>kg</td>
</tr>
<tr>
<td>Emissionen</td>
<td>0</td>
<td>kg</td>
</tr>
</tbody>
</table>

Maintenance (B2)

The product declared by Wienerberger GmbH is longlasting and maintenance-free. During the reference service life of Argeton facade system no maintenance (B2) measures are necessary at all. Cleansing the facade is generally not necessary. But the facade may be cleansed with water and brushes, and possibly in addition of gentle detergents usual in trade if required. A moss infestation is not to be expected owing to the ventilation and the constant baking of the bricks as a consequence thereof. No expenditures are considered in module B2 within life cycle assessment framework at all.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance cycle</td>
<td>0</td>
<td>Number/R SL</td>
</tr>
</tbody>
</table>

Repair (B3)

According to the manufacturer, the products do not have to be repaired (B3) during the considered service life.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair cycle</td>
<td>0</td>
<td>Number/R SL</td>
</tr>
<tr>
<td>Electricity consumption</td>
<td>-</td>
<td>kWh</td>
</tr>
<tr>
<td>Other energy carriers</td>
<td>-</td>
<td>MJ</td>
</tr>
<tr>
<td>Material loss</td>
<td>-</td>
<td>kg</td>
</tr>
</tbody>
</table>

Replacement (B4) / Refurbishment (B5)

According to the manufacturer, the product components do not have to be replaced (B4) during the considered service life. According to the manufacturer’s information, a renewal of the whole Argeton system (B5) is not necessary during the RSL of 50 years.

In individual cases a replacement of single or several panels may be necessary or required. This can be the case e.g. in the event of damage or optical impairment of the panels. No expenditures are considered in modules B4 and B5 within the life cycle assessment framework at all.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement cycle</td>
<td>0</td>
<td>Number/R SL</td>
</tr>
<tr>
<td>Electricity consumption</td>
<td>0</td>
<td>kWh</td>
</tr>
<tr>
<td>Litres of fuel</td>
<td>0</td>
<td>l/100km</td>
</tr>
<tr>
<td>Replacement of worn parts</td>
<td>0</td>
<td>kg</td>
</tr>
</tbody>
</table>

If a reference service life is declared in accordance with the applicable ISO standards, the assumptions and conditions of use underlying the identified RSL shall be declared. It must also be stated that the declared RSL only applies under the reference conditions mentioned. The same applies to a service life declared by the manufacturer. Corresponding information on reference conditions does not have to be declared for a service life according to the table of /BBNB/.

Reference operating life

As specified by the manufacturer, the reference operating life of the strapping is at least 60 years, the one of the facade panel is 150 years. The RSL considered in this case is 50 years, this corresponds to the RSL of residential buildings according to the DGNB system (Deutsche Gesellschaft für Nachhaltiges Bauen e.V. – German Sustainable Building Council).

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference service life</td>
<td>50</td>
<td>a</td>
</tr>
</tbody>
</table>
Operational energy use (B6) and Operational water use (B7)

Modules B6 and B7 are not relevant at product level. Since modules B6 and B7 refer to the operation of the building they are not declared in the EPD for the Argeton facade system. The use of the product is unrelated to the operational use of energy and water for buildings.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water consumption</td>
<td>-</td>
<td>m³</td>
</tr>
<tr>
<td>Electricity consumption</td>
<td>-</td>
<td>kWh</td>
</tr>
</tbody>
</table>

End of life (C1-C4)

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recycling For recycling (90 % of the aluminium strapping)</td>
<td>0.513</td>
<td>kg</td>
</tr>
<tr>
<td>Landfilling For disposal (facade panel plus 10 % of collective losses of the strapping)</td>
<td>40.06</td>
<td>kg</td>
</tr>
</tbody>
</table>

The facade panel and the strapping are manually dismantled in order to guarantee a selective removal. After the transport of the dismantled product the facade panel is destined for disposal on an inert waste disposal (module C4), the aluminium strapping may be recycled. Allowances and expenditures after the recycling are declared in module D, as the aluminium strapping is expected to obtain the end-of-waste status directly after deduction of collective losses /EMPA/.

After deduction of collective losses the remaining aluminium scrap (0.51 kg) passes a recycling process (4 % remelting losses), taking into account that the scrap first returns into production (Module A1-A3) in terms of figures (0.22 kg - closed-loop).

The value-free and unencumbered scrap is saturated on the input side this way. For the remaining net scrap volume (0.28 kg) an allowance for primary aluminium will be assigned in module D. Allowances for electricity and thermal energy owing to the thermal recovery of packing within module A5 are considered in module D as well.

Reuse, recovery and/or recycling potentials (D), relevant scenario information

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowances for primary aluminium</td>
<td>0.28</td>
<td>kg</td>
</tr>
<tr>
<td>Allowance for electricity (from Modul A5)</td>
<td>0.69</td>
<td>MJ</td>
</tr>
<tr>
<td>Allowance for thermal energy (from module A5) (from Modul A5)</td>
<td>1.68</td>
<td>MJ</td>
</tr>
</tbody>
</table>
The results of the impact assessment represent relative details / potentials and do not illustrate information on concrete environmental impacts (endpoint); neither limit value violations nor risk analyses may be derived from it.
6. LCA: Interpretation

It is evident from the determined LCA results that product manufacturing (modules A1-A3) dominates the life cycle results in all considered evaluation variables. The Ozone Depletion Potential (ODP) is the only exception. The allowances in module D primarily result from the aluminium recycling potential. On consideration of the ODP, however, not allowances but encumbrances are to be recorded resulting from the recycling potential. The reason of this is the fact that electricity is required for the remelting process. The background data sets dominate the ODP results. The stage of production (modules A1-A3) is considered subsequently. It is evident that the use of energy source in the factory (natural gas) and the power demand contribute most to the use of primary energy resources. While the total use of non-renewable primary energy resources (PENRT) during manufacturing is dominated by natural gas at around 60%, the total use of renewable primary energy resources (PERT) during manufacturing is dominated by natural gas and the power demand contribute most to the use of primary energy resources. While the total use of non-renewable primary energy resources (PENRT) during manufacturing is dominated by natural gas at around 60%, the total use of renewable primary energy resources (PERT) is defined primarily by electricity from renewables in the power mix. The contribution of the strapping to the total use of renewable primary energy resources (PERT) may as well be attributed to the electricity consumed in preproduction processes. The dominance of the energy sources becomes also apparent on consideration of the global warming potential (GWP). 43 kg of CO2 equivalents are released during the manufacturing (modules A1-A3) of ceramic facade panels inclusive strapping. 19 % of it result from pre-production processes of electricity generation, 57 % from the firing and drying process in the factory and approx. 11 % from pre-production processes of the aluminium strapping manufacturing. As a result of the extraction and manufacturing of further recipe components of ceramic facade panels (in addition to own clay) less than 10 % of the GWP is caused by manufacturing. Pigments account for the highest share of recipe components, especially the extraction and manufacturing of chrome ore in this case. Expenditures for the extraction of own clay do not exist separately, but they are a portion of the factory's total energetic expenditures. About 4 % of the GWP within modules A1-A3 may be attributed to transport processes. Closer consideration of the results (modules A1-A3) of further impact categories also confirms the significant influence of the use of energy source in the factory, both power demand and the natural gas-based firing process and the emissions as a consequence thereof. The manufacturing of the strapping contributes excluding ODP between 9 % (Abiotic Depletion Potential for fossil Fuels - ADPF) to 34 % (PERT) to the results in modules A1-A3. The significance of pigments becomes particularly apparent with the results of the abiotic depletion potential for elements (ADPE). The environmental performance of pigments is primarily defined using chrome ore in all considered impact categories.

The assumption concerning the volume of the primary aluminium engaged in the manufacturing of the strapping, and the method concerning the unencumbered modelling of scrap in the product system input influence the results significantly. This study proceeds the assumption that 40 % of the aluminium engaged for the strapping consists of recycled scrap, and 60 % of primary aluminium. The scrap enters modules A1-A3 unencumbered. This assumption leads to the fact that compared to other studies which are based e.g. on an LCA assuming a lower scrap rate and hence a higher primary metal rate, the present results lead to comparatively low contributions in modules A1-A3 but on the same time to lower allowances in module D. The proportions of primary and secondary aluminium underlying this study are average values of the European Aluminium Association (EAA), as the exact portion of Wienerberger GmbH (which may not influence this) is not known.

All additional assumptions made influence the results insignificantly.

7. Requisite evidence

7.1 Radioactivity
Radioactivity is not relevant for ceramic facade elements.

7.2 Leaching
Test point/record/date: Keramisch-Technologisches-Baustofflaboratorium e.V. Hamburg, Unter den Linden 2, 21465 Reinbek, Germany Test report no. 38 488 dated 4 April 2012 Result: The leaching test refers to the elements of arsenic, chrome, fluoride, molybdenum, sulphate, selenium, and vanadium according to /EN 7375/. These elements are currently regarded as critical elements.

Using the monitored products is possible without restrictions.

8. References

IBU 2016

ISO 14025
DIN EN/ISO 14025:2011-10, Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

EN 15804
EN 15804:2012-04+A1 2013, Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products.

PCR 2012, Part B
Institut Bauen und Umwelt e.V., Königswinter (ed.): Produktkategorienregeln für Bauprodukte aus dem Programm für Umwelt-Produktdeklarationen des Instituts Bauen und Umwelt (IBU) Teil B (Product category rules for construction products from the EPD
ISO 9001

ISO 14001
ISO 14001:2004, Environmental management systems - Requirements with guidance for use

ISO 50001

OHSAS 18001
OHSAS 18001 - Zertifizierungsgrundlage für Managementsysteme zum Arbeitsschutz (Occupational Health and Safety Assessment Series), 2010-02

DIN EN 13501

DIN EN 10545-3
DIN EN 10545-3:1997-12, Determination of water absorption, apparent porosity, apparent relative density and bulk density (ISO 10545-3:1995, including Technical Corrigendum 1:1997); German version EN ISO 10545-3:1997

DIN EN 14411
DIN EN 14411:2012-12, Ceramictiles - Definitions, classification, characteristics, evaluation of conformity and marking

General building inspectorate approval
General building inspectorate approval no. Z-33.1-1032 of the German Institut for Civil Engineering (DIBT) dated 2 May 2013

DIN EN ISO 10545-12
DIN EN ISO 10545-12:1997-12
Title: Ceramic tiles - Part 12: Determination of frost resistance (ISO 10545-12:1995); German version DIN EN ISO 10545-12:1997-12

DIN EN ISO 10545-13
DIN EN ISO 10545-13:1997-12

DIN V 105-100
DIN 105-100:2012-01
Title: Clay masonry units - Part 100: Clay masonry units with specific properties.

DIN EN 755
DIN EN 755-1:2008-06
Title: Aluminium and aluminium alloys - Extruded rod/bar, tube and profiles - Part 1: Technical conditions for inspection and delivery; German version EN 755-1:2008

DIN 573-3
DIN EN 573-3:2013-12
Title: Aluminium and aluminium alloys - Chemical composition and form of wrought products - Part 3: Chemical composition and form of products; German version EN 573-3:2013

N EN 7375
NEN 7375:2004 NL, Leaching characteristics - Determination of the leaching of inorganic components from moulded or monolithic materials with a diffusion test - Solid earthy and stony materials

EAA
European Aluminium Association, Statistics 2014

EMPA

REACH Candidate List

European Waste Catalogue
Europäisches Abfallverzeichnis EAV or “European Waste Catalogue EWC and hazardous waste list”, 2002

GaBi software

GaBi documentation

<table>
<thead>
<tr>
<th>Publisher</th>
<th>Tel</th>
<th>+49 (0)30 3087748-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut Bauen und Umwelt e.V.</td>
<td>Fax</td>
<td>+49 (0)30 3087748-29</td>
</tr>
<tr>
<td>Panoramastr. 1</td>
<td>Mail</td>
<td>info@ibu-epd.com</td>
</tr>
<tr>
<td>10178 Berlin</td>
<td>Web</td>
<td>www.ibu-epd.com</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programme holder</th>
<th>Tel</th>
<th>+49 (0)30 - 3087748-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut Bauen und Umwelt e.V.</td>
<td>Fax</td>
<td>+49 (0)30 – 3087748 -29</td>
</tr>
<tr>
<td>Panoramastr 1</td>
<td>Mail</td>
<td>info@ibu-epd.com</td>
</tr>
<tr>
<td>10178 Berlin</td>
<td>Web</td>
<td>www.ibu-epd.com</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author of the Life Cycle Assessment</th>
<th>Tel</th>
<th>+49 (0)711 341817-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE INTERNATIONAL AG</td>
<td>Fax</td>
<td>+49 (0)711 341817-25</td>
</tr>
<tr>
<td>Hauptstraße 111-113</td>
<td>Mail</td>
<td>info@pe-international.com</td>
</tr>
<tr>
<td>70771 Leinfelden-Echterdingen</td>
<td>Web</td>
<td>www.pe-international.com</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner of the Declaration</th>
<th>Tel</th>
<th>+49 (3581) 3839 320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argeton GmbH</td>
<td>Fax</td>
<td>+49 (3581) 3839 459</td>
</tr>
<tr>
<td>Oldenburger Allee 26</td>
<td>Mail</td>
<td>info@argeton.com</td>
</tr>
<tr>
<td>30659 Hannover</td>
<td>Web</td>
<td>www.argeton.com</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>